Electrical Technology

Contents

$>$ Half Power point frequencies in series resonance
> Parallel resonance
> Impedance curve in parallel resonance
$>$ Test yourself
> NPTEL Link

Series Resonance

The peak power delivered to the circuit is;

$$
P=\frac{V_{m}^{2}}{R}
$$

The so-called half-power is given when $I=\frac{V_{m}}{\sqrt{2} R}$.

We find the frequencies, w_{1} and w_{2}, at which this half-power occurs by using;

$$
\sqrt{2} R=\sqrt{R^{2}+\left(w L-\frac{1}{w C}\right)^{2}}
$$

Series Resonance

After some insightful algebra one will find two frequencies at which the previous equation is satisfied, they are:

$$
w_{1}=-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
$$

and

$$
w_{2}=\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
$$

The two half-power frequencies are related to the resonant frequency by

$$
w_{o}=\sqrt{w_{1} w_{2}}
$$

Series Resonance

The bandwidth of the series resonant circuit is given by;

$$
B W=w_{b}=w_{2}-w_{1}=\frac{R}{L}
$$

We define the \mathbf{Q} (quality factor) of the circuit as;

$$
Q=\frac{w_{o} L}{R}=\frac{1}{w_{o} R C}=\frac{1}{R} \sqrt{\left(\frac{L}{C}\right)}
$$

Using Q, we can write the bandwidth as;

$$
B W=\frac{w_{o}}{Q}
$$

These are all important relationships.

Parallel Resonance

Background

Consider the circuits shown below:

$$
I=V\left[\frac{1}{R}+j w L+\frac{1}{j w C}\right]
$$

Series Resonance-Parallel Resonance

Duality

$$
I=V\left[\frac{1}{R}+j w C+\frac{1}{j w L}\right] \quad V=I\left[R+j w L+\frac{1}{j w C}\right]
$$

We notice the above equations are the same provided:

$$
\begin{aligned}
& I \longleftrightarrow V \\
& R \longleftrightarrow \frac{1}{R} \\
& L \longleftrightarrow C
\end{aligned}
$$

Parallel Resonance

Background

What this means is that for all the equations we have derived for the parallel resonant circuit, we can use for the series resonant circuit provided we make the substitutions:

$$
R \quad \text { replaced be } \frac{1}{R}
$$

> | L | replaced by | C |
| :--- | :--- | :--- |
| C | replaced by | L |

Series Resonance

Duality

$$
I=V\left[\frac{1}{R}+j w C+\frac{1}{j w L}\right] \quad V=I\left[R+j w L+\frac{1}{j w C}\right]
$$

We notice the above equations are the same provided:

If we make the inner-change, then one equation becomes the same as the other.

For such case, we say the one circuit is the dual of the other.

PARALLEL RESONANCE

Typical parallel
Resonant cricuit

vectur Digigra.
Paralid cet.
(capacituie cursant $=$ Inducture part I Cisl Cunent)
ie imaginary comporento of $I_{L}+I_{c}$ cancel each other

$$
\begin{aligned}
& \frac{v}{x_{C}}=\frac{V}{Z_{L}} \times \frac{x_{L}}{z_{L}} \\
& Z_{L}^{2}=x_{C} x_{L} \\
& =\frac{1}{\omega_{0} C} \times \omega_{b} L=\frac{L}{C} \\
& Z_{L}=\sqrt{\frac{L}{C}} \\
& \sqrt{R^{2}+\omega_{0}^{2} L^{2}}=\sqrt{\frac{L}{C}} \\
& R^{2}+\omega_{0}^{2} L^{2}=\frac{L^{2}}{C} \\
& \omega_{0}^{2} L^{2}=\frac{L}{C}-R^{2}
\end{aligned}
$$

Q.-facter.

$$
\begin{aligned}
& Q=\frac{I_{c}}{I}=\frac{V / x_{c}}{V / z} \\
& =\frac{z_{r}}{x_{c}}=\frac{t}{c / 2} \times \frac{1}{\omega_{r c}} \\
& \text { - } \frac{L}{\text { Cn }} \times \text { are } \\
& =\cos \frac{L}{R} \\
& Q=\omega_{0} \frac{1}{2}=a \operatorname{tach} i \\
& \text { of senar cricunt }
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{0}^{2}=\frac{1}{L C}-\frac{R^{2}}{L^{2}} \\
& \omega_{0}=\sqrt{\frac{1}{L C}=\frac{R^{2}}{L^{2}}} \\
& f_{0}=\frac{1}{2 n}=\frac{1}{\frac{1}{L C}}-\frac{R^{2}}{L^{2}}
\end{aligned}
$$

If rexistance of cist is neplected /Len
to $=\frac{1}{2 \pi \sqrt{L C}}$ ie prquency of the resinance of the Sever cct
It resonance, only IL $I_{L} \phi$ remain

$$
\begin{aligned}
& \text { It resonaxce, onls } I_{L} \cos \phi \text { remains } \\
& \frac{V}{Z_{R}}=\frac{V}{Z_{L}} \cdot \frac{R}{Z_{L}} \text { on } Z_{r}=\frac{Z_{L}^{2}}{R}=\frac{L}{C R} \text { fun(1) }
\end{aligned}
$$

The quiralest inpedance of the parellel rewnating circuit is $\frac{L}{C R}$. This impedance is called DYNAMIC RESS. - TANCE of the parallel cricuit. Ris len, Impeduce in very hyp at revonavice. Cuncert is much lower is paballel cricuit. at resonavce, Cuncw in much REAleed REJECTOR CIRCUTT. Pt is unity

RESONANCE BETWEEN PARALLEZ R-C \&R-L CIRCUIT

$$
\begin{aligned}
& Y=\frac{1}{R_{C}-j^{2} x_{C}}+\frac{1}{R_{L}+j x_{L}} \\
& =\frac{R_{G}}{R_{C}^{2}+X_{L}^{2}}+\frac{R_{L}}{R_{L}^{2}+x_{L}^{2}} \\
& +j\left[\frac{X_{L}}{R_{c}^{2}+X_{L}^{2}}=\frac{X_{L}}{R_{L}^{2}+X_{L}^{2}}\right]=0+\delta^{\prime} B
\end{aligned}
$$

At reronance susceptance in zew $\frac{X_{C}}{R_{C}^{2}+x_{L}^{2}}=\frac{X_{L}}{R_{L}^{2}+x_{L}^{2}}$

$$
\text { u } R_{c}^{2}=R_{t}^{2}=\frac{L}{c} \text { Hen }
$$

is is always zero.
This shows hat the cincuit crill be at resorance for any prqueny privided $R_{c}=R_{c}=\sqrt{\frac{L}{c}}$.
seani in thes cct $I_{e} \sin \phi_{1}=I_{e} \sin \varphi_{2}$

$$
\begin{aligned}
& \text { min thei cct } \\
& \frac{V}{R_{c}{ }^{3}+\frac{1}{\omega_{0}^{2} c^{2}}} \cdot \frac{\frac{1}{\varepsilon_{0} c c}}{\sqrt{R_{c}^{2}+\frac{1}{\omega_{0}^{2} c^{2}}}}=\frac{V}{\sqrt{R_{L}^{2}+\cos _{0}^{2} L^{2}}} \frac{\omega_{0} L}{\sqrt{R_{L}^{2}+\cos ^{2} L^{2}}}
\end{aligned}
$$

$$
\omega_{0}^{2}\left[L^{2}-R_{C}^{2} L C\right]=\frac{L}{c}-R_{C}^{2} \quad\left\{\begin{array}{l}
\sin \varphi_{1}=\frac{K_{C}}{Z_{L_{c}}^{2} S_{c}^{2}} \\
\sin \varphi_{L}=\frac{X_{L}}{Z_{L_{c} c e t}}
\end{array}\right.
$$

$$
\omega_{0}^{2}=\frac{\frac{L}{c}-R_{c}^{2}}{L^{2}-R_{c}^{2} L C}
$$

$$
\omega_{0}^{2}=\frac{1}{L C}\left[\frac{\frac{L}{c}-R_{L}^{2}}{\frac{L}{C}-R_{s}^{2}}\right]
$$

$$
\omega_{0}=\frac{1}{\sqrt{L C}} \sqrt{\frac{\frac{L}{C}-R_{c}^{2}}{\frac{L}{C}-R_{C}^{2}}}
$$

PARALLEL RESONANCE

$$
\begin{aligned}
Y(j \omega) & =\frac{1}{R}+\frac{1}{j \omega L}+j \omega C \quad v \sin \omega+(2) \\
& =G+j\left(\omega C-\frac{1}{\omega L}\right) \quad \text { Parallel Resonance cst } \\
& =G+j B \quad\left(B=B_{C}-B_{L}\right) \\
|Y(j \omega)| & =\sqrt{C^{2}+B^{2}}=\sqrt{G^{2}+\left(\omega C=\frac{1}{\omega L}\right)^{2}} \\
I & =V Y=V \sqrt{G^{2}+\left(\omega C=\frac{1}{\omega L}\right)^{2}}
\end{aligned}
$$

The et is at resonance chen Susceptance is zero The admittance then becomes Minimum, $\alpha=G$.
The current the et is minimum. $I=V G$ bequency is $f r$.

$$
\begin{aligned}
& \omega_{r} c=\frac{1}{\omega_{r} L} \quad \text { or } \omega_{r}=\frac{1}{\sqrt{L_{c}}} \\
& \omega_{r}^{2}=\frac{1}{L_{c}} \quad
\end{aligned}
$$

variation of Current nean Parailel Resomance

Admittance with Fequency in Porallel set
variation of Current wirt. Fepvency in Penallel Resonant ect

Q-FACTOR OR PARALLEL RESONANCE
The Condition if resonance occurs outer susceptance is Zero

$$
y=G+8 B
$$

$$
=\frac{1}{R}+j \omega c+\frac{1}{j \omega L}
$$

$$
=\frac{1}{R}+j\left(\omega c-\frac{1}{\omega L}\right)
$$

$$
\begin{aligned}
\operatorname{cor} C & =\frac{1}{\omega_{r L}} \\
\omega_{r} & =\frac{1}{\sqrt{L c}}
\end{aligned}
$$

Band width $=f_{2}-f_{1}$
Fo parallel circuit

$$
\begin{align*}
& \omega_{1} c-\frac{1}{c_{1} L}=-\frac{1}{R} \tag{1}\\
& \omega_{2} c-\frac{1}{\omega_{2 L}}=\frac{1}{R} .
\end{align*}
$$

$$
\begin{aligned}
& \omega_{1}^{2}+\frac{\omega_{1}}{R C}-\frac{1}{L C}=0 \\
& \omega_{1}=\frac{-1}{2 R C}+\sqrt{\left(\frac{1}{2 R C}\right)^{2}+\frac{1}{L C}} \\
& \omega_{2}=\frac{1}{2 R C}+\sqrt{\left(\frac{1}{2 R C}\right)^{2}+\frac{1}{L C}} \\
& \omega_{2}-\omega_{1}=\frac{1}{R C}=\frac{\omega_{2}}{R \omega_{C} C} \\
& B \omega=\frac{1}{R C}=\frac{\omega_{r}}{\omega_{2}-\omega_{1}}=\frac{\omega_{2}}{1 R C}=\omega R C \\
& Q_{r}=\frac{2 n \times \frac{1}{2} \angle I^{2}}{\frac{I^{2}}{2} R \times \frac{1}{f}}=\frac{2 n f \cdot \frac{1}{2} L\left(\frac{V}{\left.\omega_{L}\right)^{2}} \cdot R\right.}{Q_{r}}=\frac{V^{2}}{2} \\
& =\frac{2 n+L R}{\omega^{2} \angle L^{2}}=\frac{R}{\omega L} \\
& Q=2 n \frac{\frac{1}{2} C V_{2}}{\left(\frac{12}{2 R}\right) \times \frac{1}{f}}=2 n f C R=\omega C R
\end{aligned}
$$

cument Mapnificatrin occurs in parallel leswnant cot

$$
\frac{\text { nent Moynificatian }}{I_{L}=\frac{V}{\omega r L}=\frac{I R}{\omega r L}=I Q_{n} ; \quad I_{c}=\frac{V}{1 / \operatorname{cor} c}=\frac{T R C}{\omega_{r}}=I Q_{1} \quad V=I R}
$$

| | COMPARISON
 Point of
 Comparison |
| :--- | :--- | :--- |
| SN SERIES \& PARALLEL RESONANCE | |

Parallel Resonance

Parallel Resonance

$$
\begin{aligned}
w_{o} & =\frac{1}{\sqrt{L C}} \\
Q & =\frac{w_{o} L}{R}
\end{aligned}
$$

Series Resonance

$$
\begin{aligned}
& w_{o}=\frac{1}{\sqrt{L C}} \\
& Q=w_{o} R C
\end{aligned}
$$

$B W=\left(w_{2}-w_{1}\right)=w_{B W}=\frac{R}{L} \quad w_{1} B W_{2} \quad B W=w_{B W}=\frac{1}{R C}$
$w_{1}, w_{2}=\left[\frac{\mp R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}\right]$
$w_{1}, w_{2}=w_{o}\left[\frac{\mp 1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right]$

$$
w_{1}, w_{2}=w_{o}\left[\frac{\mp 1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right]
$$

